A global dimension theorem for quantized Banach algebras
نویسندگان
چکیده
منابع مشابه
Zel’manov’s Theorem for Primitive Jordan–banach Algebras
In fact, if X is any vector space on which the primitive Banach algebra A acts faithfully and irreducibly, then X can be converted in a Banach space in such a way that the requirements in Theorem 0 are satisfied and even the inclusion A9BL(X ) is contractive. Roughly speaking, the aim of this paper is to prove the appropriate Jordan variant of Theorem 0. The notion of primitiveness for Jordan a...
متن کاملamenability of banach algebras
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
15 صفحه اولfixed point property for banach algebras associated to locally compact groups
در این پایان نامه به بررسی خاصیت نقطه ثابت و خاصیت نقطه ثابت برای نیم گروههای برگشت پذیر چپ روی بعضی جبرهای باناخ از جمله جبر فوریه و جبر فوریه استیلتیس پرداخته شده است. برای مثال بیان شده است که اگر گروه یک گروه فشرده موضعی با همسایگی فشرده برای عنصر همانی که تحت درونریختی ها پایاست باشد آنگاه جبر فوریه و جبر فوریه استیلتیس دارای خاصیت نقطه ثابت برای نیم گروه های برگشت پذیر چپ است اگر و تنها ا...
15 صفحه اولOn Monomial Algebras of Finite Global Dimension
Let G be an associative monomial k-algebra. If G is assumed to be finitely presented, then either G contains a free subalgebra on two monomials or else G has polynomial growth. If instead G is assumed to have finite global dimension, then either G contains a free subalgebra or else G has a finite presentation and polynomial growth. Also, a graded Hopf algebra with generators in degree one and r...
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Moscow Mathematical Society
سال: 2009
ISSN: 0077-1554,1547-738X
DOI: 10.1090/s0077-1554-09-00174-5